A Study on Maximum Wind Power Penetration Limit in Island Power System Considering High-Voltage Direct Current Interconnections

نویسندگان

  • Minhan Yoon
  • Yong-Tae Yoon
  • Gilsoo Jang
  • Ying-Yi Hong
چکیده

The variability and uncontrollability of wind power increases the difficulty for a power system operator to implement a wind power system with a high penetration rate. These are more serious factors to consider in small and isolated power systems since the system has small operating reserves and inertia to secure frequency and voltage. Typically, this difficulty can be reduced by interconnection with another robust power system using a controllable transmission system such as a high-voltage direct current (HVDC) system. However, the reliability and stability constraints of a power system has to be performed according to the HVDC system implementation. In this paper, the method for calculation of maximum wind power penetration in an island supplied by a HVDC power system is presented, and the operational strategy of a HVDC system is proposed to secure the power system reliability and stability. The case study is performed for the Jeju Island power system in the Korean smart grid demonstration area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Analysis and Economic Load Dispatch Evaluation of Network with High Wind Power Penetration

This study based on investigation for integration wind power into conventional power system with its impact on fossil fuel generators and their generation management. Wind power as environmental friendly energy source can reduce the operational cost of the system due to considering no cost for energizing the generator in comparing with fossil fuel generators. However due to unpredictable nature...

متن کامل

Sliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition

This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...

متن کامل

Influence of Fault Current Limiter in Voltage Drop and TRV Considering Wind Farm

Influence of distributed generation systems in the distribution systems can increase the level of short-circuit current. The effectiveness of distributed generation systems is affected by the size, location, type of distributed generation systems technology, and the methods of connecting to distribution systems. Wind turbine system is the examples of distributed generation source. Not only does...

متن کامل

Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults

This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...

متن کامل

Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

This paper presents modeling, simulation and control of matrix converter (MC) for variable speed wind turbine (VSWT) system including permanent magnet synchronous generator (PMSG). At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015